# Projects

The research fields of the CRC are divided into four thematic and highly interlinked RAs:

**RA A**studies continuous processes for NP formation and their self-assembly into well-organised optically active porous structures.**RA B**develops novel SPMs and processes for NP classification with respect to size, shape and surface properties.**RA C**employs high-end methodologies for the multidimensional characterisation of single NPs, SPMs and particle ensembles with respect to their surfaces, diffusive transport and disperse properties including size, shape as well as porosity.**RA D**provides models for particle interactions, particle transport and self-assembly. Based on a novel framework of unified balance equations, NP synthesis and their chromatographic separation will be modelled and optimised with respect to structure-property-process functions taking uncertain conditions into account.

### Research Area A: Formation of Functional Particles

## A01 - Formation dynamics of coloured particles

#### Principal investigator:

Prof. Dr.-Ing. Wolfgang Peukert

Institute of Particle Technology (external link)

#### Researchers:

Markus Biegel (M. Sc.), Nabi Traoré (M. Sc.), Dr. rer. nat. Cornelia Damm

#### Project summary:

The objective is the rigorous design of scalable continuous flow synthesis of silver and gold nanoparticles of various sizes, shapes and composition with the aim to produce particles with desired optical properties. The particle formation dynamics is characterised by multidimensional ensemble methods and by high-end techniques on the single particle level. Predictive one- and two-dimensional population balance models for the seed-mediated growth will be established to tailor the formation dynamics. Finally, the synthesis will be coupled with size- and shape-selective chromatography.

#### Publications:

- T. Schikarski, H. Trzenschiok, M. Avila and W. Peukert, Impact of solvent properties on the precipitation of active pharmaceutical ingredients.
*Powder Technology***2023**,*415*, 118032 (Project).*A01* - T. Schikarski, M. Avila, H. Trzenschiok, A. Güldenpfennig and W. Peukert, Quantitative modeling of precipitation processes.
*Chemical Engineering Journal***2022**,*444*, 136195 (Project).*A01* - P. Cardenas Lopez, M. J. Uttinger, N. E. Traoré, H. A. Khan, D. Drobek, B. Apeleo Zubiri, E. Spiecker, L. Pflug, W. Peukert and J. Walter, Multidimensional characterization of noble metal alloy nanoparticles by multiwavelength analytical ultracentrifugation.
*Nanoscale***2022**,*14*(35), 12928-12939 (Project).*A01, C01, C04, D03* - M. Distaso, V. Lautenbach, M. J. Uttinger, J. Walter, C. Lübbert, T. Thajudeen and W. Peukert, A widely applicable method to stabilize nanoparticles comprising oxygen-rich functional groups.
*Powder Technology***2022**, 117633 (Project).*A01, C04* - T. Schikarski, M. Avila and W. Peukert, En route towards a comprehensive dimensionless representation of precipitation processes.
*Chemical Engineering Journal***2022**,*428*, 131984 (Project).*A01* - J. Dienstbier, K.-M. Aigner, J. Rolfes, W. Peukert, D. Segets, L. Pflug and F. Liers, Robust optimization in nanoparticle technology: A proof of principle by quantum dot growth in a residence time reactor.
*Computers & Chemical Engineering***2022**,*157*, 107618 (Project).*A01, A02, D03, D06* - L. Pflug, T. Schikarski, A. Keimer, W. Peukert and M. Stingl, eMoM: Exact method of moments—Nucleation and size dependent growth of nanoparticles.
*Computers & Chemical Engineering***2020**,*136*, 106775 (Project).*A01, D03*

## A02 - Tailored hierarchical semiconductors

#### Principal investigator:

Prof. Dr.-Ing. Doris Segets

Particle Science and Technology, University of Duisburg-Essen (external link)

#### Researchers:

#### Project summary:

The objective is the development of a continuous process for the preparation of hierarchically organised indium phosphide core, zinc sulphide shell (InP/ZnS) supraparticles. These will combine the advantage of tailored absorption and emission properties with secondary particle sizes > 100 nm. While the former will be achieved via colour mixing of red, green and blue (r/g/b) primary particles, the latter will be realised by the combination of highly reproducible experiments with numerical parameter identification and rigorous mathematical optimization. This will allow the design of optimum processes under uncertain conditions for their production at technical scale.

#### Publications:

- Z. Wang and D. Segets, Aminophosphine-based continuous liquid-phase synthesis of InP and InP/ZnS quantum dots in a customized tubular flow reactor.
*Reaction Chemistry & Engineering***2023**,*8*(2), 316-322 (Project).*A02* - J. Dienstbier, K.-M. Aigner, J. Rolfes, W. Peukert, D. Segets, L. Pflug and F. Liers, Robust optimization in nanoparticle technology: A proof of principle by quantum dot growth in a residence time reactor.
*Computers & Chemical Engineering***2022**,*157*, 107618 (Project).*A01, A02, D03, D06* - S. Süβ, K. Bartsch, C. Wasmus, C. Damm, D. Segets and W. Peukert, Chromatographic property classification of narrowly distributed ZnS quantum dots.
*Nanoscale***2020**,*12*(22), 12114-12125 (Project).*A02, B04* - M. Spinola, A. Keimer, D. Segets, G. Leugering and L. Pflug, Model-Based Optimization of Ripening Processes with Feedback Modules.
*Chemical Engineering & Technology***2020**,*43*(5), 896-903 (Project).*A02, D03* - C. Giraudet, M. S. G. Knoll, Y. Galvan, S. Süß, D. Segets, N. Vogel, M. H. Rausch and A. P. Fröba, Diffusion of Gold Nanoparticles in Inverse Opals Probed by Heterodyne Dynamic Light Scattering.
*Transport in Porous Media***2020**,*131*(2), 723-737 (Project).*A02, B01, C03*

## A03 - Continuous flow synthesis of patchy particles with designed resonances and interactions

#### Principal investigator:

Prof. Robin Klupp Taylor (MEng, DPhil (Oxon))

Nanostructured Particles Research Group (external link)

#### Researchers:

Andreas Völkl (M.Sc.), Julia Seifert (M. Sc.)

#### Project summary:

The objective is the deposition of plasmonic patches made of noble metal on dielectric particles. To determine which process parameters lead to a certain degree of coverage and shape of patches, we will perform inline measurements of the kinetics of the redox reactions, the patch nucleation and patch growth during continuous flow synthesis. Thus, we will establish a model for patch formation. Process parameters which lead to excellent optical properties will be identified and the corresponding particles synthesised on the order of few grams and evaluated as pigments. In addition, we will functionalise tailored metal patches on nanoscale core particles in order to endow these with ability to perform anisotropic interactions.

#### Publications:

- A. Völkl and R. N. Klupp Taylor, Investigation and mitigation of reagent ageing during the continuous flow synthesis of patchy particles.
*Chemical Engineering Research and Design***2022**,*181*, 133-143 (Project).*A03* - T. Meincke, J. Walter, L. Pflug, T. Thajudeen, A. Völkl, P. Cardenas Lopez, M. J. Uttinger, M. Stingl, S. Watanabe, W. Peukert and R. N. Klupp Taylor, Determination of the yield, mass and structure of silver patches on colloidal silica using multiwavelength analytical ultracentrifugation.
*Journal of Colloid and Interface Science***2022**,*607*, 698-710 (Project).*A03, C04, D05*

## A04 - Nanoparticulate metal-organic frameworks

#### Principal investigator:

Prof. Dr. Martin Hartmann

Erlangen Catalysis Resource Centre (external link)

#### Researchers:

Madhura Joshi (M.Sc.), Dr.-Ing. Marcus Fischer

#### Project summary:

The objective is the synthesis of lanthanide-based porous metal organic framework (MOF) nanoparticles and their application in luminescence thermometry. We will gain understanding in the factors governing the synthesis of the porous Ln-MOF nanoparticles by in situ monitoring of their synthesis. The synthesis of this promising class of materials will be controlled with respect to nanoparticle size, morphology, surface stabilisation and luminescence properties. The latter will be achieved by co-doping of a second group 3 or lanthanide metal, by addition of guest species such as InP quantum dots or small gold clusters for application as ratiometric luminescence thermometers.

#### Publications:

- S. Glante, D. Wisser, M. Hartmann, M. Joos, R. E. Dinnebier and S. Bette, Lattice Modification and Morphological Control of Halide-Substituted yqt-Type Zeolitic Imidazolate Frameworks Zn3mim5X, with X = F, Br, Cl, or OH.
*Crystal Growth & Design***2022**,*22*(6), 3795-3807 (Project).*A04* - M. Hartmann and Y. S. Avadhut, Solid State Magnetic Resonance Spectroscopy of Metal Oxide Nanoparticles. In
*Metal Oxide Nanoparticles*, 2021; pp 513-555, (Project).*A04, C02* - O. Diwald and M. Hartmann, Adsorption and Chemical Reactivity. In
*Metal Oxide Nanoparticles*, 2021; pp 593-636, (Project).*A04, C02*

## A05 - Defined self-assembly of structural colour pigments

#### Principal investigator:

Prof. Dr. rer. nat. Nicolas Vogel

Self-Assembled Materials Research Group (external link)

#### Researchers:

#### Project summary:

The objective is the fabrication of structural colour pigments with optimal colouration. We will use a bottom-up strategy to assemble colloidal particles into defined thin films and supraparticles. We will combine dielectric, absorbing and emitting particles synergistically and control their structure, number ratios and relative positions to produce optimized colouration in close collaboration with mathematical optimization and simulations on structure formation.

#### Publications:

- M. Schöttle, T. Lauster, L. J. Roemling, N. Vogel and M. Retsch, A Continuous Gradient Colloidal Glass.
*Advanced Materials***2022**, 2208745 (Project).*A05* - S. Wenderoth, G. Bleyer, J. Endres, J. Prieschl, N. Vogel, S. Wintzheimer and K. Mandel, Spray-Dried Photonic Balls with a Disordered/Ordered Hybrid Structure for Shear-Stress Indication.
*Small 18*(48), 2203068 (Project).*A05, KM* - M. Rey, J. Walter, J. Harrer, C. M. Perez, S. Chiera, S. Nair, M. Ickler, A. Fuchs, M. Michaud, M. J. Uttinger, A. B. Schofield, J. H. J. Thijssen, M. Distaso, W. Peukert and N. Vogel, Versatile strategy for homogeneous drying patterns of dispersed particles.
*Nature Communications***2022**,*13*(1), 2840 (Project).*A05, C04* - J. Wang, Y. Liu, G. Bleyer, E. S. A. Goerlitzer, S. Englisch, T. Przybilla, C. F. Mbah, M. Engel, E. Spiecker, I. Imaz, D. Maspoch and N. Vogel, Coloration in Supraparticles Assembled from Polyhedral Metal-Organic Framework Particles.
*Angewandte Chemie International Edition***2022**,*61*(16), e202117455 (Project).*A05, C01, D04* - J. Wang, S. Hahn, E. Amstad and N. Vogel, Tailored Double Emulsions Made Simple.
*Advanced Materials***2022**,*34*(5), 2107338 (Project).*A05* - M. J. Uttinger, D. Jung, N. Dao, H. Canziani, C. Lübbert, N. Vogel, W. Peukert, J. Harting and J. Walter, Probing sedimentation non-ideality of particulate systems using analytical centrifugation.
*Soft Matter***2021**,*17*(10), 2803-2814 (Project).*A05, C04, D02* - F. J. Wendisch, M. Rey, N. Vogel and G. R. Bourret, Large-Scale Synthesis of Highly Uniform Silicon Nanowire Arrays Using Metal-Assisted Chemical Etching.
*Chemistry of Materials***2020**,*32*(21), 9425-9434 (Project).*A05* - M. Rey, M. J. Uttinger, W. Peukert, J. Walter and N. Vogel, Probing particle heteroaggregation using analytical centrifugation.
*Soft Matter***2020**,*16*(14), 3407-3415 (Project).*A05, C04*

### Research Area B: Particle Chromatography

## B01 - Synthesis of hierarchical porous materials for nanoparticle chromatography

#### Principal investigators:

Dr.-Ing. Alexandra Inayat

Porous Materials Group, Institute of Chemical Reaction Engineering (external link)

Prof. Dr. rer. nat. Nicolas Vogel

Self-Assembled Materials Research Group (external link)

#### Researchers:

#### Project summary:

The objective is the development of preparative methods for hierarchical porous materials with controlled pore and surface characteristics, which will be tailored and optimized for application as novel stationary phase materials for the chromatographic separation of nanoparticles. Our preparative approach relies on the synthesis of mesoporous primary particles with defined particle shape and pore size, their controlled assembly into supraparticles with pore size-specific surface properties, and the subsequent conversion of these supraparticles into macroporous zeolite particles with targeted pore diameter, shape and length.

#### Publications:

- J. Wang, E. Kang, U. Sultan, B. Merle, A. Inayat, B. Graczykowski, G. Fytas and N. Vogel, Influence of Surfactant-Mediated Interparticle Contacts on the Mechanical Stability of Supraparticles.
*The Journal of Physical Chemistry C***2021**,*125*(42), 23445-23456 (Project).*B01* - J. Wang, J. Schwenger, A. Ströbel, P. Feldner, P. Herre, S. Romeis, W. Peukert, B. Merle and N. Vogel, Mechanics of colloidal supraparticles under compression.
*Science Advances***2021**,*7*(42), eabj0954 (Project).*B01, B04* - H. Canziani, F. Bever, A. Sommereyns, M. Schmidt and N. Vogel, Roughly Spherical: Tailored PMMA–SiO2 Composite Supraparticles with Optimized Powder Flowability for Additive Manufacturing.
*ACS Applied Materials & Interfaces***2021**,*13*(21), 25334-25345 (Project).*B01* - J.-P. Grass, K. Klühspies, B. Reiprich, W. Schwieger and A. Inayat, Layer-Like Zeolite X as Catalyst in a Knoevenagel Condensation: The Effect of Different Preparation Pathways and Cation Exchange.
*Catalysts***2021**,*11*(4), 474 (Project).*B01* - H. Canziani, S. Chiera, T. Schuffenhauer, S.-P. Kopp, F. Metzger, A. Bück, M. Schmidt and N. Vogel, Bottom-Up Design of Composite Supraparticles for Powder-Based Additive Manufacturing.
*Small***2020**,*16*(30), 2002076 (Project).*B01, B02* - C. Giraudet, M. S. G. Knoll, Y. Galvan, S. Süß, D. Segets, N. Vogel, M. H. Rausch and A. P. Fröba, Diffusion of Gold Nanoparticles in Inverse Opals Probed by Heterodyne Dynamic Light Scattering.
*Transport in Porous Media***2020**,*131*(2), 723-737 (Project).*A02, B01, C03*

## B02 - Creation of functional particles and porous structures by spray drying

#### Principal investigator:

Prof. Dr.-Ing. Andreas Bück

Solids Processing Group (external link)

#### Researchers:

David Herbert Panduro Vela (M. Sc.)

#### Project summary:

The objective is the development of a new scalable technology for continuous production of stationary phase materials for use in particle chromatography from suspensions by “spray printing”, i.e. layer-by-layer build-up of functional, porous substrates by individual droplet placement and drying. We will design and implement a new device for layer-by-layer build up. We will perform experiments on solids formation from drying free and sessile droplets and derive dynamic models that will allow describing predictively layer morphology and spatial heterogeneity of the porous substrates.

#### Publications:

- N. Roy, R. Dürr, A. Bück, J. Kumar and S. Sundar, Numerical methods for particle agglomeration and breakage in lid-driven cavity flows at low Reynolds numbers.
*Mathematics and Computers in Simulation***2022**,*192*, 33-49 (Project).*B02* - J. Saha and A. Bück, Conservative Finite Volume Schemes for Multidimensional Fragmentation Problems.
*Mathematics***2021**,*9*(6), 635 (Project).*B02* - H. Canziani, S. Chiera, T. Schuffenhauer, S.-P. Kopp, F. Metzger, A. Bück, M. Schmidt and N. Vogel, Bottom-Up Design of Composite Supraparticles for Powder-Based Additive Manufacturing.
*Small***2020**,*16*(30), 2002076 (Project).*B01, B02* - F. E. Berger Bioucas, M. H. Rausch, J. Schmidt, A. Bück, T. M. Koller and A. P. Fröba, Effective Thermal Conductivity of Nanofluids: Measurement and Prediction.
*International Journal of Thermophysics***2020**,*41*(5), 55 (Project).*B02, C03*

## B03 - Textural properties of porous materials for particle chromatography

#### Principal investigator:

Prof. Dr. Matthias Thommes

Institute of Separation Science and Technology (external link)

#### Researchers:

#### Project summary:

The objective is to develop a reliable methodology for the determination of textural properties (e.g. accessible surface area and porosity, pore size distribution, pore network characteristics) of stationary phase materials immersed in a liquid phase. We will utilise various experimental techniques, including the development of novel methodologies based on NMR relaxation measurements and inverse size exclusion chromatography, coupled with advanced gas adsorption and liquid intrusion methods. This combination of techniques in the liquid and in the gas phase will allow the derivation of a consistent, unified framework for the textural characterisation of hierarchically structured stationary phase materials.

#### Publications:

- C. Schlumberger, C. Scherdel, M. Kriesten, P. Leicht, A. Keilbach, H. Ehmann, P. Kotnik, G. Reichenauer and M. Thommes, Reliable surface area determination of powders and meso/macroporous materials: Small-angle X-ray scattering and gas physisorption.
*Microporous and Mesoporous Materials***2022**,*329*, 111554 (Project).*B03* - M. Thommes and C. Schlumberger, Characterization of Nanoporous Materials.
*Annual Review of Chemical and Biomolecular Engineering***2021**,*12*(1), 137-162 (Project).*B03, C02* - C. Schlumberger and M. Thommes, Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry—A Tutorial Review.
*Advanced Materials Interfaces***2021**,*8*(4), 2002181 (Project).*B03, C02*

## B04 - Fundamentals of nanoparticle chromatography

#### Principal investigator:

Prof. Dr.-Ing. Wolfgang Peukert

Institute of Particle Technology (external link)

#### Researchers:

Lukas Gromotka (M. Sc.), Dr. rer. nat. Cornelia Damm

#### Project summary:

The objective is the chromatographic classification of nanoparticles regarding size, shape and surface functionality based on an in-depth understanding of the nanoparticle-stationary phase interactions and of the transport processes of nanoparticles in the column and the stationary phase. The interactions will be tailored by index matching and by porosity, size, charge and surface properties of the nanoparticles and the stationary phase material. The retention behaviour of the nanoparticles will be studied and two-dimensional grade efficiencies will be evaluated. Based on novel process concepts, preparative nanoparticle chromatography will be coupled with continuous nanoparticles synthesis.

#### Publications:

- W. Peukert, M. Kaspereit, T. Hofe and L. Gromotka, Size Exclusion Chromatography (SEC). In
*Particle Separation Techniques: Fundamentals, Instrumentation, and Selected Applications*, Contado, C., Ed. Elsevier: 2022, (Project).*B04, B05* - C. Damm and W. Peukert, Chapter 3 – Particle dispersions in liquid media. In
*Particle Separation Techniques*, Contado, C., Ed. Elsevier: 2022; pp 27-62, (Project).*B04* - J. Wang, J. Schwenger, A. Ströbel, P. Feldner, P. Herre, S. Romeis, W. Peukert, B. Merle and N. Vogel, Mechanics of colloidal supraparticles under compression.
*Science Advances***2021**,*7*(42), eabj0954 (Project).*B01, B04* - S. Süβ, K. Bartsch, C. Wasmus, C. Damm, D. Segets and W. Peukert, Chromatographic property classification of narrowly distributed ZnS quantum dots.
*Nanoscale***2020**,*12*(22), 12114-12125 (Project).*A02, B04*

## B05 - Process concepts for size-selective nanoparticle chromatography

#### Principal investigator:

Prof. Dr.-Ing. Malte Kaspereit

Institute of Separation Science and Technology (external link)

#### Researchers:

#### Project summary:

The objective is to develop efficient chromatographic process concepts for the size-selective classification of nanoparticles. Since this represents a very challenging separation problem, the exploitable retention mechanisms – size exclusion and reversible interactions – will be analysed experimentally. By means of mathematical optimization of corresponding models, not only single-column processes are developed that combine these mechanisms in an optimal manner, but moreover, new and more powerful processes are devised based on clever recycling strategies and multi column arrangements.

#### Publications:

- A. Baer, P. Malgaretti, M. Kaspereit, J. Harting and A.-S. Smith, Modelling diffusive transport of particles interacting with slit nanopore walls: The case of fullerenes in toluene filled alumina pores.
*Journal of Molecular Liquids***2022**,*368*, 120636 (Project).*B05, D01, D02* - M. Supper, K. Heller, J. Söllner, T. Sainio and M. Kaspereit, Separation of Molar Weight-Distributed Polyethylene Glycols by Reversed-Phase Chromatography—Analysis and Modeling Based on Isocratic Analytical-Scale Investigations.
*Processes***2022**,*10*(11), 2160 (Project).*B05* - W. Wu, M. Supper, M. H. Rausch, M. Kaspereit and A. P. Fröba, Mutual Diffusivities of Binary Mixtures of Water and Poly(ethylene) Glycol from Heterodyne Dynamic Light Scattering.
*International Journal of Thermophysics***2022**,*43*(12), 177 (Project).*B05, C03* - W. Peukert, M. Kaspereit, T. Hofe and L. Gromotka, Size Exclusion Chromatography (SEC). In
*Particle Separation Techniques: Fundamentals, Instrumentation, and Selected Applications*, Contado, C., Ed. Elsevier: 2022, (Project).*B04, B05* - H. S. H. Nguyen, M. Kaspereit and T. Sainio, Intermittent recycle-integrated reactor-separator for production of well-defined non-digestible oligosaccharides from oat β-glucan.
*Chemical Engineering Journal***2021**,*410*, 128352 (Project).*B05* - T. Sainio and M. Kaspereit, Analysis of reactor–separator processes for polymeric and oligomeric degradation products with controlled molar mass distributions.
*Chemical Engineering Science***2021**,*229*, 116154 (Project).*B05* - J. Dienstbier, J. Schmölder, R. Burlacu, F. Liers and M. Kaspereit, Global optimization of batch and steady-state recycling chromatography based on the equilibrium model.
*Computers & Chemical Engineering***2020**,*135*, 106687 (Project).*B05, D06* - J. Schmölder and M. Kaspereit, A Modular Framework for the Modelling and Optimization of Advanced Chromatographic Processes.
*Processes***2020**,*8*(1), 65 (Project).*B05*

### Research Area C: Comprehensive Characterisation

## C01 - Microscopic 3D characterisation of functional particles and pore structures

#### Principal investigator:

Prof. Dr. rer. nat. habil. Erdmann Spiecker

Institute of Micro- and Nanostructure Research (external link)

#### Researchers:

Dominik Drobek (M. Sc.), Alexander Götz (M. Sc.), Dr. Benjamin Apeleo-Zubiri (Akad. Rat)

#### Project summary:

The objective is the quantitative 3D analysis of particle systems and porous structures synthesised and used in the CRC by advanced electron tomography and X-ray nanotomography techniques. The 3D data will be shared within the CRC for modelling and optimization of functional particles and separation processes. A workflow for quantitative 3D characterisation will be established for particular particle systems. This will then be extended to correlative and scale-bridging tomography of particle ensembles and stationary phase materials to gain statistically relevant information. Furthermore, a workflow to derive quantitative structure-property-relationships on the single particle level will be developed.

#### Publications:

- P. Cardenas Lopez, M. J. Uttinger, N. E. Traoré, H. A. Khan, D. Drobek, B. Apeleo Zubiri, E. Spiecker, L. Pflug, W. Peukert and J. Walter, Multidimensional characterization of noble metal alloy nanoparticles by multiwavelength analytical ultracentrifugation.
*Nanoscale***2022**,*14*(35), 12928-12939 (Project).*A01, C01, C04, D03* - J. Wang, Y. Liu, G. Bleyer, E. S. A. Goerlitzer, S. Englisch, T. Przybilla, C. F. Mbah, M. Engel, E. Spiecker, I. Imaz, D. Maspoch and N. Vogel, Coloration in Supraparticles Assembled from Polyhedral Metal-Organic Framework Particles.
*Angewandte Chemie International Edition***2022**,*61*(16), e202117455 (Project).*A05, C01, D04* - M. Sarcletti, H. Park, J. Wirth, S. Englisch, A. Eigen, D. Drobek, D. Vivod, B. Friedrich, R. Tietze, C. Alexiou, D. Zahn, B. Apeleo Zubiri, E. Spiecker and M. Halik, The remediation of nano-/microplastics from water.
*Materials Today***2021**,*48*, 38-46 (Project).*C01* - J. Wirth, S. Englisch, D. Drobek, B. Apeleo Zubiri, M. Wu, N. Taccardi, N. Raman, P. Wasserscheid and E. Spiecker, Unraveling Structural Details in Ga-Pd SCALMS Systems Using Correlative Nano-CT, 360° Electron Tomography and Analytical TEM.
*Catalysts***2021**,*11*(7), 810 (Project).*C01* - B. Apeleo Zubiri, J. Wirth, D. Drobek, S. Englisch, T. Przybilla, T. Weissenberger, W. Schwieger and E. Spiecker, Correlative Laboratory Nano-CT and 360° Electron Tomography of Macropore Structures in Hierarchical Zeolites.
*Advanced Materials Interfaces***2021**,*8*(4), 2001154 (Project).*C01*

## C02 - Characterisation of functionalised surfaces

#### Principal investigators:

Prof. Dr. Martin Hartmann

Erlangen Catalysis Resource Centre (external link)

Prof. Dr. Matthias Thommes

Institute of Separation Science and Technology (external link)

#### Researchers:

Dr. Dorothea Wisser, Dr. Carlos Cuadrado Collados

#### Project summary:

The objective is to develop a comprehensive methodology for a reliable assessment of surface chemistry of both stationary phase materials and nanoparticle surfaces. Therefore, we will combine complimentary advanced adsorption (e.g. in situ adsorption calorimetry) and spectroscopic (e.g. solid-state NMR spectroscopy) techniques for the characterisation of the surface chemistry of porous materials and nanoparticles. This will allow us to determine the chemical nature, surface density and location of different functional groups of stationary phase material and nanoparticle surfaces immersed in a liquid phase, but also to investigate interactions between nanoparticles and stationary phase materials.

#### Publications:

- S. Glante, D. Wisser, M. Hartmann, M. Joos, R. E. Dinnebier and S. Bette, Lattice Modification and Morphological Control of Halide-Substituted yqt-Type Zeolitic Imidazolate Frameworks Zn3mim5X, with X = F, Br, Cl, or OH.
*Crystal Growth & Design***2022**,*22*(6), 3795-3807 (Project).*A04, C02* - M. Hartmann and Y. S. Avadhut, Solid State Magnetic Resonance Spectroscopy of Metal Oxide Nanoparticles. In
*Metal Oxide Nanoparticles*, 2021; pp 513-555, (Project).*A04, C02* - O. Diwald and M. Hartmann, Adsorption and Chemical Reactivity. In
*Metal Oxide Nanoparticles*, 2021; pp 593-636, (Project).*A04, C02* - Y. Sun, R. F. DeJaco, Z. Li, D. Tang, S. Glante, D. S. Sholl, C. M. Colina, R. Q. Snurr, M. Thommes, M. Hartmann and J. I. Siepmann, Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning.
*Science Advances***2021**,*7*(30), eabg3983 (Project).*C02* - M. Thommes and C. Schlumberger, Characterization of Nanoporous Materials.
*Annual Review of Chemical and Biomolecular Engineering***2021**,*12*(1), 137-162 (Project).*B03, C02* - C. Schlumberger and M. Thommes, Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry—A Tutorial Review.
*Advanced Materials Interfaces***2021**,*8*(4), 2002181 (Project).*B03, C02*

## C03 - Characterisation of diffusion of nanoparticles

#### Principal investigator:

Prof. Dr.-Ing. habil. Andreas Fröba

Institute of Advanced Optical Technologies – Thermophysical Properties (external link)

#### Researchers:

Knoll, Matthias, Wenchang Wu (M. Eng.), Cui, Junwei, Dr.-Ing. Michael Rausch

#### Project summary:

The objective is to gain a fundamental understanding of diffusion of nanoparticles in solvents and in porous materials. To assess accurate information on diffusion coefficients, light scattering- and fluorescence-based photon correlation spectroscopy techniques will be used and further developed. For different particulate systems, the diffusivities will be studied in free media first to understand the influence of particle size, shape, and interactions. Then, the diffusivity of dispersions of spherical particles will be investigated in porous materials as a function of the ratio of the pore diameter to the particle diameter as well as of pore size distribution, pore arrangement, and size of the pore opening.

#### Publications:

- W. Wu, M. Supper, M. H. Rausch, M. Kaspereit and A. P. Fröba, Mutual Diffusivities of Binary Mixtures of Water and Poly(ethylene) Glycol from Heterodyne Dynamic Light Scattering.
*International Journal of Thermophysics***2022**,*43*(12), 177 (Project).*B05, C03* - F. E. Berger Bioucas, M. H. Rausch, J. Schmidt, A. Bück, T. M. Koller and A. P. Fröba, Effective Thermal Conductivity of Nanofluids: Measurement and Prediction.
*International Journal of Thermophysics***2020**,*41*(5), 55 (Project).*B02, C03* - C. Giraudet, M. S. G. Knoll, Y. Galvan, S. Süß, D. Segets, N. Vogel, M. H. Rausch and A. P. Fröba, Diffusion of Gold Nanoparticles in Inverse Opals Probed by Heterodyne Dynamic Light Scattering.
*Transport in Porous Media***2020**,*131*(2), 723-737 (Project).*A02, B01, C03*

## C04 - Multidimensional characterisation of nanoparticle ensembles

#### Principal investigators:

Dr.-Ing. Johannes Walter

Interdisciplinary Centre for Functional Particle Systems (external link)

Prof. Dr.-Ing. Wolfgang Peukert

Institute of Particle Technology (external link)

#### Researchers:

Paola Cardenas (M. Sc.), Moritz Moß (M. Sc.), Dr. Christian Lübbert, Dr. Lisa Stiegler

#### Project summary:

The objective is the comprehensive multidimensional characterisation of particle ensembles. We will develop new methodologies for the quantitative characterisation of nanoparticles with respect to size, density, shape and optical properties (extinction and emission) by means of combined centrifugation and gas phase analytics. In addition, we will perform systematic non-ideality studies using analytical (ultra)centrifugation. We will determine the effect of concentration on the sedimentation and diffusive properties of nanoparticles for narrow and gradually more complex size distributions and will further combine these investigations with supplementary, surface sensitive techniques.

#### Publications:

- P. Cardenas Lopez, M. J. Uttinger, N. E. Traoré, H. A. Khan, D. Drobek, B. Apeleo Zubiri, E. Spiecker, L. Pflug, W. Peukert and J. Walter, Multidimensional characterization of noble metal alloy nanoparticles by multiwavelength analytical ultracentrifugation.
*Nanoscale***2022**,*14*(35), 12928-12939 (Project).*A01, C01, C04, D03* - M. Distaso, V. Lautenbach, M. J. Uttinger, J. Walter, C. Lübbert, T. Thajudeen and W. Peukert, A widely applicable method to stabilize nanoparticles comprising oxygen-rich functional groups.
*Powder Technology***2022**, 117633 (Project).*A01, C04* - M. Rey, J. Walter, J. Harrer, C. M. Perez, S. Chiera, S. Nair, M. Ickler, A. Fuchs, M. Michaud, M. J. Uttinger, A. B. Schofield, J. H. J. Thijssen, M. Distaso, W. Peukert and N. Vogel, Versatile strategy for homogeneous drying patterns of dispersed particles.
*Nature Communications***2022**,*13*(1), 2840 (Project).*A05, C04* - D. Jung, M. J. Uttinger, P. Malgaretti, W. Peukert, J. Walter and J. Harting, Hydrodynamic simulations of sedimenting dilute particle suspensions under repulsive DLVO interactions.
*Soft Matter***2022**,*18*(11), 2157-2167 (Project).*C04, D02* - T. Meincke, J. Walter, L. Pflug, T. Thajudeen, A. Völkl, P. Cardenas Lopez, M. J. Uttinger, M. Stingl, S. Watanabe, W. Peukert and R. N. Klupp Taylor, Determination of the yield, mass and structure of silver patches on colloidal silica using multiwavelength analytical ultracentrifugation.
*Journal of Colloid and Interface Science***2022**,*607*, 698-710 (Project).*A03, C04, D05* - U. Frank, M. J. Uttinger, S. E. Wawra, C. Lübbert and W. Peukert, Progress in Multidimensional Particle Characterization.
*KONA Powder and Particle Journal***2022**,*advpub*, (Project).*C04* - C. Lübbert and W. Peukert, Characterization of Electrospray Drop Size Distributions by Mobility-Classified Mass Spectrometry: Implications for Ion Clustering in Solution and Ion Formation Pathways.
*Analytical Chemistry***2021**,*93*(38), 12862-12871 (Project).*C04* - A. Hegetschweiler, A.-R. Jochem, A. Zimmermann, J. Walter, T. Staudt and T. Kraus, Colloidal Analysis of Particles Extracted from Microalloyed Steels.
*Particle & Particle Systems Characterization***2021**,*38*(7), 2000236 (Project).*C04* - M. J. Uttinger, D. Jung, N. Dao, H. Canziani, C. Lübbert, N. Vogel, W. Peukert, J. Harting and J. Walter, Probing sedimentation non-ideality of particulate systems using analytical centrifugation.
*Soft Matter***2021**,*17*(10), 2803-2814 (Project).*A05, C04, D02* - M. J. Uttinger, S. Boldt, S. E. Wawra, T. D. Freiwald, C. Damm, J. Walter, D. Lerche and W. Peukert, New Prospects for Particle Characterization Using Analytical Centrifugation with Sector-Shaped Centerpieces.
*Particle & Particle Systems Characterization***2020**,*37*(7), 2000108 (Project).*C04* - M. Rey, M. J. Uttinger, W. Peukert, J. Walter and N. Vogel, Probing particle heteroaggregation using analytical centrifugation.
*Soft Matter***2020**,*16*(14), 3407-3415 (Project).*A05, C04*

### Research Area D: Modelling and Optimization

## D01 - Molecular modelling of surface and particle interactions

#### Principal investigator:

Prof. Dr. Ana-Sunčana Smith

Physics Underlying Life Sciences (PULS) Research Group (external link)

#### Researchers:

Rustam Durdyyev, Arsha Cherian

#### Project summary:

The objective is to establish strategies for the targeted design of nanoparticles and solid pores based on the unique information gained from first-principles molecular modelling studies. We will make use of advanced simulations of nanoparticles in bulk and confined liquids to understand the relation between the molecular and mean-field description of the nanoparticle thermodynamic properties, interaction potentials, and emergent correlations. We will use these results to optimize the experiments and enable parametrisation of mesoscopic simulations with the aim of understanding and tailoring nanoparticle stability and separation in complex geometries.

#### Publications:

- S. Ziegler and A.-S. Smith, Hydrodynamic particle interactions in linear and radial viscosity gradients.
*Journal of Fluid Mechanics***2022**,*943*, A29 (Project).*D01* - M. Cvitković, D. Ghanti, N. Raake and A.-S. Smith, Crowding competes with trapping to enhance interfacial diffusion.
*The European Physical Journal Plus***2022**,*137*(3), 355 (Project).*D01* - M. Hubert, O. Trosman, Y. Collard, A. Sukhov, J. Harting, N. Vandewalle and A. S. Smith, Scallop Theorem and Swimming at the Mesoscale.
*Physical Review Letters***2021**,*126*(22), 224501 (Project).*D01, D02* - N. Kulyk, D. Berger, A.-S. Smith and J. Harting, Catalytic flow with a coupled finite difference — Lattice Boltzmann scheme.
*Computer Physics Communications***2020**,*256*, 107443 (Project).*D01, D02* - R. Stepić, L. Jurković, K. Klementyeva, M. Ukrainczyk, M. Gredičak, D. M. Smith, D. Kralj and A.-S. Smith, Adsorption of Aspartate Derivatives to Calcite Surfaces in Aqueous Environment.
*Crystal Growth & Design***2020**,*20*(5), 2853-2859 (Project).*D01*

## D02 - Modelling transport of nanoparticles

#### Principal investigator:

Prof. Dr. Jens Harting

Dynamics of Complex Fluids and Interfaces Group, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (external link)

#### Researchers:

Paolo Malgaretti, Sukhov, Alexander

#### Project summary:

The objective is to gain a fundamental understanding of the transport properties of nanoparticles in suspension and in realistic porous structures. Such situations are relevant during particle synthesis and chromatographic separation. Using mesoscale lattice Boltzmann simulations, we will bridge the gap between nanoscale molecular dynamics simulations and macroscale continuum models. Collective behaviour and material parameters have an impact on the transport properties or separation efficiency and will be investigated and optimized systematically.

#### Publications:

- A. Gubbiotti, M. Baldelli, G. Di Muccio, P. Malgaretti, S. Marbach and M. Chinappi, Electroosmosis in nanopores: computational methods and technological applications.
*Advances in Physics: X***2022**,*7*(1), 2036638 (Project).*D02* - A. Baer, P. Malgaretti, M. Kaspereit, J. Harting and A.-S. Smith, Modelling diffusive transport of particles interacting with slit nanopore walls: The case of fullerenes in toluene filled alumina pores.
*Journal of Molecular Liquids***2022**,*368*, 120636 (Project).*B05, D01, D02* - Z. Zhang, A. Sukhov, J. Harting, P. Malgaretti and D. Ahmed, Rolling microswarms along acoustic virtual walls.
*Nat. Commun.***2022**,*13*(1), 7347 (Project).*D02* - G. C. Antunes, P. Malgaretti, J. Harting and S. Dietrich, Pumping and Mixing in Active Pores.
*Physical Review Letters***2022**,*129*(18), 188003 (Project).*D02* - O. Aouane, M. Sega, B. Bäuerlein, K. Avila and J. Harting, Inertial focusing of a dilute suspension in pipe flow.
*Physics of Fluids***2022**, in press (Project).*D02* - D. Jung, M. J. Uttinger, P. Malgaretti, W. Peukert, J. Walter and J. Harting, Hydrodynamic simulations of sedimenting dilute particle suspensions under repulsive DLVO interactions.
*Soft Matter***2022**,*18*(11), 2157-2167 (Project).*C04, D02* - E. S. Asmolov, T. V. Nizkaya, J. Harting and O. I. Vinogradova, Instability of particle inertial migration in shear flow.
*Physics of Fluids***2021**,*33*(9), 092008 (Project).*D02* - P. Malgaretti and J. Harting, Phoretic colloids close to and trapped at fluid interfaces.
*ChemNanoMat***2021**,*7*(10), 1073-1081 (Project).*D02* - M. Hubert, O. Trosman, Y. Collard, A. Sukhov, J. Harting, N. Vandewalle and A. S. Smith, Scallop Theorem and Swimming at the Mesoscale.
*Physical Review Letters***2021**,*126*(22), 224501 (Project).*D01, D02* - M. F. Carusela, P. Malgaretti and J. M. Rubi, Antiresonant driven systems for particle manipulation.
*Physical Review E***2021**,*103*(6), 062102 (Project).*D02* - M. J. Uttinger, D. Jung, N. Dao, H. Canziani, C. Lübbert, N. Vogel, W. Peukert, J. Harting and J. Walter, Probing sedimentation non-ideality of particulate systems using analytical centrifugation.
*Soft Matter***2021**,*17*(10), 2803-2814 (Project).*A05, C04, D02* - P. Malgaretti and J. Harting, Transport of neutral and charged nanorods across varying-section channels.
*Soft Matter***2021**,*17*(8), 2062-2070 (Project).*D02* - N. Kulyk, D. Berger, A.-S. Smith and J. Harting, Catalytic flow with a coupled finite difference — Lattice Boltzmann scheme.
*Computer Physics Communications***2020**,*256*, 107443 (Project).*D01, D02*

## D03 - Unifying mathematical framework for synthesis and chromatographic separation of nanoparticles

#### Principal investigator:

Lukas Pflug

Chair of Applied Mathematics (Continuous Optimization) (external link)

#### Researchers:

#### Project summary:

The objective is the model-based optimization of the synthesis and the chromatographic separation of nanoparticles. Building on the analysis of a unifying nonlocal balance law, efficient numerical solution schemes will be developed. The basis for these is the mathematical structure of the equation, which allows the construction of semi-analytic solutions. For the optimization of processes, optimality conditions will be analytically derived, which are the starting point for gradient-based optimization methods. In cooperation with the synthesis and chromatographic separation projects these will be applied to technical processes.

#### Publications:

- G. M. Coclite, J.-M. Coron, N. De Nitti, A. Keimer and L. Pflug, A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels.
*Ann. Inst. H. Poincaré Anal. Non Linéaire***2022**, (Project).*D03* - G. M. Coclite, N. De Nitti, A. Keimer and L. Pflug, On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels.
*Zeitschrift für angewandte Mathematik und Physik***2022**,*73*(6), 241 (Project).*D03* - P. Cardenas Lopez, M. J. Uttinger, N. E. Traoré, H. A. Khan, D. Drobek, B. Apeleo Zubiri, E. Spiecker, L. Pflug, W. Peukert and J. Walter, Multidimensional characterization of noble metal alloy nanoparticles by multiwavelength analytical ultracentrifugation.
*Nanoscale***2022**,*14*(35), 12928-12939 (Project).*A01, C01, C04, D03* - A. Bayen, J. Friedrich, A. Keimer, L. Pflug and T. Veeravalli, Modeling Multilane Traffic with Moving Obstacles by Nonlocal Balance Laws.
*SIAM Journal on Applied Dynamical Systems***2022**,*21*(2), 1495-1538 (Project).*D03* - J. Dienstbier, K.-M. Aigner, J. Rolfes, W. Peukert, D. Segets, L. Pflug and F. Liers, Robust optimization in nanoparticle technology: A proof of principle by quantum dot growth in a residence time reactor.
*Computers & Chemical Engineering***2022**,*157*, 107618 (Project).*A01, A02, D03, D06* - G. M. Coclite, N. De Nitti, A. Keimer and L. Pflug, Singular limits with vanishing viscosity for nonlocal conservation laws.
*Nonlinear Analysis***2021**,*211*, 112370 (Project).*D03* - A. Bayen, J.-M. Coron, N. De Nitti, A. Keimer and L. Pflug, Boundary Controllability and Asymptotic Stabilization of a Nonlocal Traffic Flow Model.
*Vietnam Journal of Mathematics***2021**,*49*(3), 957-985 (Project).*D03* - J.-M. Coron, A. Keimer and L. Pflug, Nonlocal Transport Equations—Existence and Uniqueness of Solutions and Relation to the Corresponding Conservation Laws.
*SIAM Journal on Mathematical Analysis***2020**,*52*(6), 5500-5532 (Project).*D03* - L. Pflug, T. Schikarski, A. Keimer, W. Peukert and M. Stingl, eMoM: Exact method of moments—Nucleation and size dependent growth of nanoparticles.
*Computers & Chemical Engineering***2020**,*136*, 106775 (Project).*A01, D03* - M. Spinola, A. Keimer, D. Segets, G. Leugering and L. Pflug, Model-Based Optimization of Ripening Processes with Feedback Modules.
*Chemical Engineering & Technology***2020**,*43*(5), 896-903 (Project).*A02, D03*

## D04 - Modelling particle aggregation and assembly into optimal structures

#### Principal investigator:

Prof. Dr. Michael Engel

Self-Organization Processes Research Group (external link)

#### Researchers:

Federico Tomazic (M. Sc.), Dr. Carlos Lange Bassani, Dr. Aswathy Muttathukattil Narayanan

#### Project summary:

The objective is to model the route from nanoparticles and colloids to assemblies and aggregates. We simulate tens of thousands up to millions of particles using implicit solvent. The first aim is the prediction and optimization of the assembly of structural colour pigments and thin films. The second aim is the elucidation of individual and collective aggregation processes during the formation of network materials to guide the fabrication of porous matrices. As such, the project bridges the synthesis of colloidal nanoparticles and the resulting materials on the one hand as well as characterisation and materials optimization efforts on the other hand.

#### Publications:

- S. L. A. Bueno, A. Leonardi, N. Kar, K. Chatterjee, X. Zhan, C. Chen, Z. Wang, M. Engel, V. Fung and S. E. Skrabalak, Quinary, Senary, and Septenary High Entropy Alloy Nanoparticle Catalysts from Core@Shell Nanoparticles and the Significance of Intraparticle Heterogeneity.
*ACS Nano***2022**, (Project).*D04* - J. Wang, Y. Liu, G. Bleyer, E. S. A. Goerlitzer, S. Englisch, T. Przybilla, C. F. Mbah, M. Engel, E. Spiecker, I. Imaz, D. Maspoch and N. Vogel, Coloration in Supraparticles Assembled from Polyhedral Metal-Organic Framework Particles.
*Angewandte Chemie International Edition***2022**,*61*(16), e202117455 (Project).*A05, C01, D04* - Y. Liu, M. Klement, Y. Wang, Y. Zhong, B. Zhu, J. Chen, M. Engel and X. Ye, Macromolecular Ligand Engineering for Programmable Nanoprism Assembly.
*Journal of the American Chemical Society***2021**,*143*(39), 16163-16172 (Project).*D04* - M. Klement, S. Lee, J. A. Anderson and M. Engel, Newtonian Event-Chain Monte Carlo and Collision Prediction with Polyhedral Particles.
*Journal of Chemical Theory and Computation***2021**,*17*(8), 4686-4696 (Project).*D04* - D. V. Talapin, M. Engel and P. V. Braun, Functional materials and devices by self-assembly.
*MRS Bulletin***2020**,*45*(10), 799-806 (Project).*D04* - J. T. L. Gamler, A. Leonardi, X. Sang, K. M. Koczkur, R. R. Unocic, M. Engel and S. E. Skrabalak, Effect of lattice mismatch and shell thickness on strain in core@shell nanocrystals.
*Nanoscale Advances***2020**,*2*(3), 1105-1114 (Project).*D04*

## D05 - Topology, material and shape optimization for particle ensembles

#### Principal investigator:

Prof. Dr. rer. nat. Michael Stingl

Chair of Applied Mathematics (Continuous Optimization) (external link)

#### Researchers:

#### Project summary:

The objective is the development of a mathematical framework which allows to conclude from desired optical properties to a corresponding optimized configuration of single particles as well as particle assemblies. A structural optimization approach based on discrete dipole approximations is explored to allow for a design space with sufficiently high resolution and enabling the prediction of structure-property relations of individual particles. For particle assemblies a structural optimization method based on a generalised hybrid finite element approach is established. Finally, dispersity and angle independency are taken into account by a new stochastic optimization method.

#### Publications:

- M. Kuchlbauer, F. Liers and M. Stingl, Outer Approximation for Mixed-Integer Nonlinear Robust Optimization.
*Journal of Optimization Theory and Applications***2022**,*195*(3), 1056-1086 (Project).*D05, D06* - A. Uihlein, L. Pflug and M. Stingl, Optimizing Color of Particulate Products.
*Proceedings in Applied Mathematics and Mechanics***2022**, (Project).*D05* - N. Nees, L. Pflug, B. Mann and M. Stingl, Multi-material design optimization of optical properties of particulate products by discrete dipole approximation and sequential global programming.
*Structural and Multidisciplinary Optimization***2022**, (Project).*D05* - T. Meincke, J. Walter, L. Pflug, T. Thajudeen, A. Völkl, P. Cardenas Lopez, M. J. Uttinger, M. Stingl, S. Watanabe, W. Peukert and R. N. Klupp Taylor, Determination of the yield, mass and structure of silver patches on colloidal silica using multiwavelength analytical ultracentrifugation.
*Journal of Colloid and Interface Science***2022**,*607*, 698-710 (Project).*A03, C04, D05* - J. Semmler and M. Stingl, On the efficient optimization of optical properties of particulate monolayers by a hybrid finite element approach.
*Structural and Multidisciplinary Optimization***2021**,*63*(3), 1219-1242 (Project).*D05* - L. Pflug, N. Bernhardt, M. Grieshammer and M. Stingl, CSG: A new stochastic gradient method for the efficient solution of structural optimization problems with infinitely many states.
*Structural and Multidisciplinary Optimization***2020**,*61*(6), 2595-2611 (Project).*D05*

## D06 - Quality control by robust optimization

#### Principal investigator:

Prof. Dr. Frauke Liers

Department of Data Science – Optimization under Uncertainty & Data Analysis (external link)

#### Researchers:

Jana Dienstbier (M. Sc.), Dr. Jan Rolfes (Akad. Rat)

#### Project summary:

The objective is the development, algorithmic design, implementation and validation of robust mathematical optimization methods for protecting the design of particulate products against uncertainties. Global solution methods will be investigated for optimal robust chromatography as well as synthesis processes, developing methods based on reformulation and decomposition. The obtained results will be validated with the projects. Information on which uncertainties are most relevant and should be reduced, together with recommendations on robust optimum design and quality control, will be returned to the experimental projects.

#### Publications:

- J. Dienstbier, K.-M. Aigner, J. Rolfes, W. Peukert, D. Segets, L. Pflug and F. Liers, Robust optimization in nanoparticle technology: A proof of principle by quantum dot growth in a residence time reactor.
*Computers & Chemical Engineering***2022**,*157*, 107618 (Project).*A01, A02, D03, D06* - M. Kuchlbauer, F. Liers and M. Stingl, Outer approximation for mixed-integer nonlinear robust optimization.
*Journal of Optimization Theory and Applications***2021**, (Project).*D06* - J. Dienstbier, J. Schmölder, R. Burlacu, F. Liers and M. Kaspereit, Global optimization of batch and steady-state recycling chromatography based on the equilibrium model.
*Computers & Chemical Engineering***2020**,*135*, 106687 (Project).*B05, D06*

### Central Projects

## MGK - Integrated research training group in particle science and technology

#### Principal investigator:

Prof. Robin Klupp Taylor (MEng, DPhil (Oxon))Go to iRTG-ParSciTech section of this website

#### Project summary:

The iRTG-ParSciTech will provide an organisational framework for doctorates carried out in CRC 1411. It supports the implementation of research projects by means of double supervision, monthly seminars and annual retreats. The qualification concept includes measures which promote technical, organisational and social skills. In particular, interdisciplinarity and internationalisation will be assured through collaborations within the CRC and with guest scientists as well as research stays abroad. Modern methods in particle technology will be taught in dedicated workshops. Finally, the graduate school will, together with other local institutions including the FAU Graduate Center, round off a comprehensive support package for doctoral researchers.

## INF - Information management and computational science support

#### Principal investigators:

Prof. Dr. rer. nat. Michael Stingl

Chair of Applied Mathematics (Continuous Optimization) (external link)

Prof. Dr. rer. nat. habil. Erdmann Spiecker

Institute of Micro- and Nanostructure Research (external link)

#### Project summary:

The objective is the systematic management of research data generated in the CRC by experiments, measuring processes and simulation. In a first step, an ontology based on process-structure-property relations will be established and metadata will be defined for all relevant objects. Second, a virtual research environment will be developed, enabling internet-based data exchange among projects as well as analysis and visualisation of full process-structure-property chains. Moreover, through the implementation of the project in the Central Institute for Scientific Computing (ZISC), computational science support will be provided, enabling an optimal usage of hardware resources.

#### Publications:

No publications found.

## Z - Central tasks of the Collaborative Research Centre

#### Principal investigator:

Prof. Dr.-Ing. Wolfgang Peukert

Institute of Particle Technology (external link)

#### Project summary:

The objective is the scientific coordination of the CRC as a whole. Thus, it covers all centralised activities including i) administrative management of all central costs, ii) support of young scientists with special focus on gender equality and reconciliation of family and work life, iii) quality control, iv) internationalisation and v) outreach. The Z project it is the central intersection between all involved institutions, i.e. DFG, the central administration of FAU and with the interdisciplinary centres at the university level.